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SUMMARY

\ ”

4ﬁr§pis paper we study the probabilistic behavior of a two-echelon
inventory system consisting of a depot and a set of bases. Primary
demands occur at the bases for a single unit at a time. Whenever a
base's inventory position reaches the reorder point (s), the base
orders sufficient inventory from the depot to raise the base's inventory
position to S. Similarly, the depot places an order to its supplier
when its inventory position reaches its reorder point; the order is for
the number of units required to raise the depot's inventory position
to a prespecified level. Thus all locations follow a continuous review
(s,s) policy. All excess demand is assumed to be backordered.

;gag'main objective is to derive the probability distribution for
the number of backordered units at a base at an arbitrary point in time
given an item follows a known (S,s) policy at each base and the depot.
The demand process at each base is assumed to be a stationary Poisson

process. The analysis is carried out for two cases. In the first case,

s % 5 ¥ §
we assumedthe system consists of a large number of bases; in the second
.I{ |'£ i . .
case, we assumed there are two bases in the system. To simplify the dis-

.lt l‘S

cussion, «e-assume&in both cases that all bases follow the same (S,s)

policy.

[
[



I. INTRODUCTION

In this paper we study the probabilistic behavior of an inventory
system consisting of a depot (the first echelon), and a set of bases
(the second echelon). Primary demands occur only at the bases. Each
demand at a base is for a single unit of an item. When a base's inven-
tory position--on-hand plus on-order minus backorders--reaches the
reorder point (s), the base orders enough inventory from the depot to
raise the base's inventory position to a pre-established level (S).
Similarly, whenever the depot inventory position reaches its reorder
point, the depot orders a sufficient quantity from its supplier to
raise its inventory position to a given value. Thus each location in
the system follows a continuous review (S,s) policy. Furthermore,
demands occurring when a base is out of stock are assumed to be back-
ordered.

Numerous real inventory systems operate in this manner. For example,
the Air Force maintains bases throughout the world. Demand for spare
parts occurs at these bases; the bases in turn are resupplied for most
components by an Air Force or other Department of Defense depot. For each
component there is only one depot that resupplies a base. Each location
in this system follows a continuous review (S,s) type inventory policy.

Our main objective is to develop the probability distribution for
the number of backordered units at a base at an arbitrary point in time
for a specific item given a particular (S,s) policy for each base and
the depot. The approach we take can also be used to determine the

probability distribution for on-hand inventory at a base at an arbitrary




point in time. We assume the demand process at each base is a stationary
Poisson process. The analysis is carried out for two cases.

In the first case, we assume the item is used at a large number of
bases. For example, Xerox has many spare parts stocked by most of the
approximately 8000 people who repair Xerox machines. Each person, cor-
responding to a base, is normally resupplied by one Branch warehouse,
corresponding to a depot. Roughly 90 people are resupplied by a single
Branch warehouse. To simplify the discussion, we will assume the demand
process is the same at each base. Furthermore, the costs--carrying costs,
shortage costs, and fixed and variable ordering costs--and depot-to-base
transportation times are assumed to be the same for each base. If each
base follows an (S,s) policy, they should all select the same values
for S and s; we assume that they do. (The analysis we present can
be modified using methods similar to those used in Chapter 5 of reference 8
to study the case where demand distributions, costs, or transportation
times are not the same at all bases).

Next, we examine a system consisting of two identical bases and a
depot. The demand processes, costs, and transportation times are the same
at both bases. Each base is assumed to follow the same (S,s) policy.
Again, we could easily extend the results to the case where there are
more than two bases; however, for ease of discussion we will describe
in detail only the two base case. As an example of this case, the
Air Force operates FB-1ll aircraft mainly at two locations at which
approximately the same removal rates are observed for most components.

An excellent survey of many papers on multi-echelon inventory systems

is given by Clark [1]. Most of these papers deal with the periodic
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review situation. Our work specifically extends the results given by
Simon [6] and Kruse and Kaplan [4]. Their papers pertain to two-echelon
systems in which the depot follows a continuous review (S,s) policy,
but the bases are restricted to a continuous review (S,S-1) policy.
Before proceeding with the analysis, we pause to comment on the
motivation for this research. This paper is part of a larger study
which examines the impact on cost and performance cof following different
inventory policies in several real multi-item, multi-echelon systems [6].
The results developed here will be used to evaluate the inventory perfor-
mance obtained using different values of the policy variables for each
item at each location in one multi-item system. In particular, the
probability distribution derived in this paper will be used to find the
optimal values for the policy variable for each item in a real system
when the objective is to select the inventory levels that minimize total
expected base backorders subject to a constraint on system inventory
investment. These values will then be compared to those obtained using
several approximation methods. General conclusions will be drawn in
that study concerning the quality and appropriateness of the several
approximation methods for determining policy variable values for items
having different demand and cost characteristics when different budget

restrictions are imposed on the system.




II. SITUATION ONE--A LARGE NUMBER OF BASES

In this section we develop the probability distribution for the
number of units backordered at a particular base at a random point in
time when the number of bases in the system is large. The specific
assumptions we make are as follows.

1. All bases and the depot follow a continuous review (S,s)
policy, and all the bases use the same values for S and s.

2. No partial fill of base orders is permitted; that is, all
S-s units must be shipped simultaneously from the depot to satisfy a
base order.

3. A stationary Poisson process generates demand at each base,
Furthermore, the demand rate A 1is the same at each base.

4. Demands occurring when a base has no on-hand inventory are back-
ordered.

5. The depot-to-base transportation time T is constant and the
same for all bases.

6. The depot resupply time R 1is constant.

7. The depot reorder point ry is greater than or equal to minus
one ; the base reorder points are also greater than or equal to minus one.

8. The number of bases in the system is large.

We now discuss the implications of these assumptions.,

Since the demands at the bases are generated one-at-a-time, the (S,s)
policy is the same as a (Q,r) policy, where r indicates the reorder
point and Q = S - s. Hence, we will refer to the base policy as a (Q,r)

policy.




Next, we make an observation about the depot's inventory position.
By assumption, a partial fill of a base's order is prohibited. Furthermore,
we observed that our assumptions imply that all bases should follow an
identical (Q,r) policy. It then follows that the depot inventory
position should always be a multiple of Q. That is, there would be no
advantage to having the inventory position be other than a multiple of
Q since extra holding costs would be incurred without improving the
chance of filling orders. Thus the depot always orders in multiples of

Q; that is, the depot reorder quantity, QD, can be expressed as

Q, = M-Q

for some M = 1,2,... .

One can show that Assumptions 1 and 3 imply that the probability dis-
tribution for the depot inventory position is uniformly distributed over
J = {rD+Q, pD+2Q,...,rD+QD} [5].

Our last observation is a consequence of Assumption 8. Since the
number of bases is large and the successive times between placing orders
by a base for depot resupply form a renewal process, the order arrival
process at the depot can be accurately approximated by a Poisson process
[3].

Before proceeding with the derivation of the probability distribution
of base backorders, let us introduce the nomenclature used in the remainder

of the paper:




IO represents the depot inventory position at time t-T-R,
Il represents base j's inventory position at time t-T-R,
12 represents base j's inventory position at time t-T,

G represents the number of orders placed by all bases other

than base j for depot resupply during (t-T-R,t-T],

D represents the number of demands occurring during (t-T-R,t-T]

at base j,

v

D represents the number of demands occurring during (t-T,t]
at base 7,

s represents the number of satisfied orders placed by base j

on the depot during (t-T-R,t-T] -- the orders are placed

during (t-T-R,t-T] and received at base j prior to t,
a(x,n) = e *x"/nt,

B(t) represents the number of backorders existing at base j at

time t,

U represents the number of orders placed on the depot during

(t-T-R,t-T] by base j that are unfilled at time t,

and vy represents the arrival rate of orders at the depot from all

bases except base j measured in orders per day.

el e o 5 i B T e _tomon s s S ——




The effect of time at base j 1is displayed in Figure 1.

Inventory Demand Inventory Demand Backorders
Position Position
1 Y
(ah (D) a?) ( (B(t))
' 1 + time
t-T-R t-T t

€¢—Depot Resupply Time —— €—Depot-to-Base Transportation-
Time

Time Sequence of Events at Base j

Figure 1

We will consider the steady state behavior of this system. In partic-
ular, our interest is in the steady state distribution of the number of
backorders at a base; that is, we want to find P(B(t) = b) for
b =0,1,... . To compute it, observe that any order placed by base j
prior to time t-T-R has been satisfied by time t. However, some orders
placed on the depot during the interval (t-T-R,t-T] by base j may not
be satisfied by time t. This could cause backorders to exist at time t
for some of the units demanded during (t-T-R,t-T]. Observe that the
inventory available to satisfy demands during the interval (+-T,t] is
12 -U-Q. If the demand at base j during (t-T,t] exceeds this amount
or this quantity is negative, then backorders will exist at time t at
base 7.

To compute P(B(t) = b) we will first compute P(U = u). We

examine two cases. In the first case, which we call Case A, the total



demand on the depot during the interval (t-T-R,t-T] does not exceed
the available depot inventory (IO), so that U = 0. 1In the second
case, which we call Case B, the total depot demand during (t-T-R,t-T]

exceeds I so that U may be positive.

0°

First consider Case A, when the number of units ordered from the
depot during the interval (t-T-R,t-T] is not larger than the available
depot inventory. Note that [(D—Il+0+r)/Q] represents the number of
orders placed by base j during the interval (t-T-R,t-T], where [k]
represents the greatest integer less than cr equal to k. Thus,in this
cases G + [(D—Il+Q+r)/Q] < IO/Q. As we observed, in this situation all
orders placed by base j on the depot prior to time t-T will be
satisfied by time t, and, therefore, P(U = 0O|Case A) = 1. Thus all
shortages existing at time t at base 3j are due to demands placed at
base j during (t-T,t].

Then

N 2 2
P(B(t) = b; Case A) = P(D = it+b|Case A; I° = i) - P(I° = i; Case A)

i=r+l
r+Q o 2

= P(D = i+b) - P(1° = i, Case A)
i=r+l
r+Q 2

= J  a(AT, 1+b) “P(I" = iy Case A), for b > 1, (Eq. 1)
i=r+l

since § does not depend on events prior to time t-T. We will next
find P(I2 = i; Case A).
Suppose I2 =2y Il = k, and k £ i. Then demand at base j

during (t-T-R,t-T] must equal one of the numbers



0, 0-(i-k), Q-(i-k)+0Q, Q-(i-k)+2Q,... . That is, the demand at base j, n,

must be an element of the set

N, = fn: n= Q-(i-k) + ng, B = 0,1,2,...5 and n £ 1,/Q} v {o}.

1
- 2 : i) ! -
Next, suppose I = 1i < I™ = k. Then demand at base ] during
(t-T-R,t-T] must equal one of the numbers k-i, k-i+Q, k-i+2Q,... ,

and, therefore, must be an element of the set

=z
1"

5 fn: n = k=i # 00, 0= 0,l;2...., and m & IO/Q}.

We will now find P(IJ = i; Case A) by considering separately the

9
cases where I° = i > IJ =k ‘and i< k. Thus
o i iO/Q-[(n-k+Q+P)/Q]
P(I” = i; Case A) = Z X Z
iOtJ k=r+l neNl m=0

P(IQ:i|Il=k; G=m; D=n; To=io) -P(Il=k; G=m; D=nj; I =i )

r+Q ) iO/Q_[(nik+Q+r)/Q]

b ol

iO'J k=i+1 n'N2 m=0
20 sl : 1 §
P(I :1lI =k3 G=mgs D=n; IO=1O) « P(I"=k; G=mj; D=n; 10=10).
(Eq. 2)
Observe that when Il 5‘1?
0, n ¢ Nl (and Case A conditions hold)
7. § Z
P(1°=4|17=k; G=m$ D=n; Iged,) =

Ly 0 & Nl (and Case A conditions hold);




10

1 2
also, when I~ > 1

ARG N? (and Case A conditions hold)

2 . ik 0 . .
P(I =1|I =k; G=m; D=nj; lO:lO) =

1N N2 (and Case A conditions hold).

Furthermore, due to the independence of the random variables Il, G, B,

and IO (see reference 5),

P(1'=k; G=mj D=n; I =i,) = P(It=Kk) - P(G=m) - P(D=n) - RIS ),

0

But P(Il=k) = 1/Q (see reference 2),

P(G=m) = a(yR,m), for m = 0,1,... (due to the basic assumptions),
P(D=n) = a(AR,n), for n = 0,1,... (since demand is Poisson distributed
at base j),
l‘lnd
sty =i g :
P(Io-lo) =¥ for iy e J (see reference 5).

Hence P(I2 = i; Case A) can be found by substituting the above probability
expressions into Eq. 2. Furthermore, by substituting the resultant
expression into Eq. 1 we have obtained P(B(t) = by Case A).

Let us now consider Case B and determine the probability of observing
b backorders at base j at time t given that the total number of units

demanded from the depot during (t-T-R,t-T] exceeds the available depot

T ———— e e T e e—
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inventory; that is, G + [(D—Il+Q+r)/Q] > IO/Q. Observe that

n
B(t) = max(O,D+U-Q-12),
Then

r+Q 5 -
Y P(B(t) = b|case By I° = i) - P(I° = i; Case B)
i=r+l

P(B(t) = b; Case B)

r+Q [(i+b)/Q]1 9
) P(D=i+b-uQ) - P(U = u|Case B; I° = i)
i=r+l  u=0

'P(I2 = i; Case B) for b > 1.

")
We now find P(D=i+b-uQ), P(U = u|Case B; I2 = i) and P(I2 = i:; Case B),

Since B has a Poisson distribution,

P(¥=i+b-uQ) = a(AT,i+b-uQ).

Rather than directly computing P(U = u|Case B; I2 = i), we will find the
distribution of the number of satisfied orders at time t that were placed
during (t-T-R,t-T] on the depot by base j; that is, we will determine
the conditional distribution for V.

We begin by evaluating
s
P(V=v|D=d; G=g; I =k; IO = Qq; Case B).

The arrival process at base j 1is a Poisson process; furthermore, the
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process generating depot orders from all other bases is approximately a
Poisson process. From base j's viewpoint, system arrivals consist of
the demands placed at that base and depot orders placed by all other
bases. The sequence in which orders are placed on the depot by base j
and all other bases determines the number of satisfied base j depot
orders at time t. If D=d and G = g, then every ordering of

the d+g arrivals is equally likely to occur since the combined arrival
process is a Poisson process (being the superposition of two Poisson
processes--the base j arrival process and the depot order process from
all other bases).

We will compute P(V=v|D=d; G=g; Il=k; Io=qQ; Case B) by considering
two cases. In the first case, the last satisfied depot order is placed by
a base other than j. Then if v orders are satisfied and Il = k,
at least vQ-(Q+r-k) and not more than vQ-(Q+r-k)+Q-1 demands must
occur at base j prior to the arrival of the (IO/Q-V)-th order at the
depot from a base other than j. In the second case, the last satisfied
depot order is placed by base 7.

Combining the above observations we see that

P(V=v|D=d; G=g; Il=k; I1,=qQ; Case B)

. d g
= Qzl (;Q;(ka+r)+;)(qrv-l) . g-(q-v-1)
w=0 d+g ) g+d-(vQ-(Q-k+r)+w+q-v-1)
vQ-(Q-k+r)+w+q-v-1

(Eq. 3)

d g
("Q'(Q'k*‘""l)(q"’) . __d-(vQ-(Q-k+r)-1)
( dtg ) g+d-(vQ-(Q-k+r)-1+q-v)
vQ-(Q-k+r)+q-v-1

+
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whenever v < q; otherwise, the probability is 0. Also, we define

)
Z

=0 if 2z > p; 2 <0, or p < 0.

Now let us find

P(D=d; G=g; Il=k; IO=qQ; Case B).

This probability is equal to

2 2

i § "
P(D=d; G=g; I =k; IO=QQ|CaSE B; I = i) - P(Case B; I° = i)

2 _ . 1
P(Case B3 I° = i[D=d; G=g; I =k; I,7aQ) - P(D=d; G=g; Il=k; I,=aQ)

0; if [(d+Q+r-k)/Q] + g < IOIQ =q or d/ Nl when 1 > k

= and d ¢ N2 when 1 < k

1 .a(ARrR,d) - a(yR,g) o

6»-%»; otherwise.

Consequently,

P(D=d; G=g; Il=k; Io=qQ|Case B 12 =1

0; [(d+Q+r-k)/Q] + g < q or d ¢ Nl when 1 >k

and d ¢ N2 when 1 <k

a(AR,d) - a(yR,g) i1 1 5 ; otherwise
P(Case B; I° = i)

Now observe that V = v if and only if U = [(d+Q+r-k)/Q]-v when

d, 6 =g, I =k, and I, = aQ in Case B. Therefore
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P(U=u|D=d; C=g; 1t=k; 1,=qQ; Case B)

= P(V = [(d+Q+r-k)/Q]—u[D=d; G=g; Il=k; Io=qQ; Case B).

Then using Eq. 3 we may find the conditional probability for the number of
unsatisfied depot orders at time t for orders placed by base j during
(t-T-R,t-T].

Upon combining tche previous results we see that

P(U=u; D=d; G=g; I =k; I,=qQ|Case B)

= P(U=u|D=d; G=g; Il=k; I1,=aQ; Case B) - P(D=d; G=g; 11=k; Io=qQ|Case B),

and

FD Q+M r+Q - o
P(U=u|Case B; 12 = 1) = { ) )
q=rq/b+l k=r+l d=0 g=q-[(d+Q+r-k)/Ql+1

P(V = [(d+Q+r—k)/Q]~u|D=d; G=g; Il=k; IO=qQ; Case B)

+ P(D=d; G=g; Il=k; IO=qQ|Case B 12 = 1i).

The final probabilities that we must compute to complete the calculation

of P(B(t) = b; Case B) are P(I2 = i; Case B).

2

P(I” = i; Case B) can be derived in virtually the same way we previously

derived P(I2 = i; Case A). It is easy to show that



15

5 ‘ i =
P(1° = 1; Case B} = ) ) , )
iOnJ k=r+l n»Nl m:(iO/Q)—[(n-k+Q+r)/O]+l

1 |
Sl o s
B a(yR,m) - a(AR,n) T

r+Q y C
iy, ) : )
iO~J k=r+l nrN? m=(i0/Q)—[(n—k+Q+r)/Q]+l

-a(yR,m) - a(AR,n).

pel
==

Thus we have found P(B(t) = b; Case A) and P(B(t) = b: Case B).

Since the two cases form a partition,

P(B(t) = b) = P(B(t) = b; Case A) + P(B(t) = b; Case B)

for B> L e

PEBt) = 0) a1 - | B(B{t) = b).
b>1




)
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III. SITUATION TWO--TWO BASES AND A DEPOT

In this section we examine a system consisting of a depot and two
identical bases. The system's operation is described in Section I,
Assumptions 1)-7) stated in the previous section are still appropriate;
however, we assume in this case that there are only two bases in the
system. Our objective, as before, is to determine the probability
distribution for the number of units backordered at a base at an arbitrary

point in time.

The desired probability distribution will be developed by again examining

two separate cases. In Case A, depot demand during (t-T-R,t-T] is
assumed not to exceed I0 by time t-T. 1In Case B, depot demand exceeds
0
by time t in the latter case. To find the probability distribution for
the number of backordered units at a base at time t, we examine the
arrival sequences at the bases. Information relating to the inventory
position at each base and the depot at time t-T-R will be combined with
knowledge of the arrival sequence at the bases. In the previous section,
G--the number of orders placed on the depot by other bases--was Poisson.
Her~ it is not and our development parallels that of Section II except
for this difference.

Without loss of generality, we will determine the desired probability
distribution for base 1. Subscripts in this section refer to a particular

base. In Case A we assume that

[(D,-17+Q+r)/Q] + [(D,-I,+a+r)/Q] £ 1,/0Q;

I. during (t-T-R,t-T]. Depot orders placed by a base may not be satisfied
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that is, the total depot demand during (t-T-R,t-T] does not exceed the
inventory available to meet that demand, IO.
Since all demands placed on the depot during the period (t-T-R,t-T]
are satisfied by time t in Case A, all backorders at base 1 at time t
are a result of demands occurring during the interval (t-T,t]. Thus
r+Q

v, 2 . 2 .
Y} P(D, = it+b|Case A; I7 = i)+ P(1{ = i; Case A)
. 1 1 1
i=r+l

P(B}(L) = b; Case A)

r+Q 2
) a(T,itb) + P(I] = i; Case A), for b > 1.
i=r+l -

Using the same logic as given earlier we see that

i Q+r
= i; Case A) = ] ) ) i} )
ioeJ k=r+l neNl j=r+l deF

2

P(Il

T8 T IS N
P(Il—1|Il-k, D,=d; D,=n3 I,=j; I =i,)

SR SN
P(Il-k, D2—d, Dl n; 12 i3 10 10)

r+Q r+Q

# § - P 2 (Eq. 4)
iged k=i+. neN2 j=r+l deF

Foageld - - e ol o
P(Il—llll-k, D,=d; Dy=nj I,=j; I =i))

2 b

l—- . =d - =N * 1:
P(Il-k, D2—d, Dl-n, I

where Nl and N2 have the same meanings as stated in Section II, and

F={d:d=0,l,...5 [(n-k+Q+r)/Q]1-Q + [(d-j+0+r)/Q]-Q < io}.
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But when I} £ IL,
|
1: n c Nl (Case A holds)
P(Iy=i[T =k; Dy=d; D=ng T,=§; I.=i ) =
0; otherwise;
and when Ii > [2,

L: n ¢ N? (Case A holds)

| T :
F([l:1|1i=k; D_=d; Dl:n; I?=]; IO=1 ) =

2 0

0; otherwise.

By independence,

R s ML i R eeat EX L35 diay 5
=0y I,=4y I.=i )= P(Il—k) P(Dz-d) P(Dl-n) P(I2-]) P(Io—lo)

e
2

°%—'a(XR,n) *a(AR,d). |

Upon substituting these results into Eq. 4 we have P(Ii = i; Case A).
In Case B, total depot demand during (t-T-R,t-T] exceeds the

available depot inventory; that is,

[(D1-11+Q+r)/QJ + [(D2-12+Q+r)/0] > IO/O.

Then

r+Q [(i+b)/Q] ” 2
P(B.(t) = b; Case B) = J | P(D, =i+b-uQ) * P(U, = u|Case By I° = i)
1 . L 1 1 1
i=r+l u=0

~P(I§ = i; Case B), b > 1.
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n 2 .
We will now find P(DL=i+b—uQ), P(U1 = u|Case B; Il = i), and

o)

}"(T;' = i: Case B).
ny
Since demand is Poisson distributed, P(Dl=i+b—uQ) = a(AT,i+b-uQ).

As before, instead of determining P(Ul = uICase B; Ii = i) directly, we
i 1 1
§oa . N i = =k . -~
will first find P(Vl v|Dl dl’ D2 d2, Il 3 12 Js Case B). As

IO=10;
we saw earlier, the last satisfied depot order could have been placed by
either base. Then conditioning on which base placed the last satisfied

depot order, we see that

B P T
P(V -v1Dl 13 Dy=dos 17k I,=3; I=i; Case B)
( 4y )(v 2 )
] Qil vQ-(Q+r-k )-1/\G0-(Qtr-3)+w/ 4, -{eQ-{Qr-k)-1)
w=0 ( . d1+d2 ) dl+d2-((V+V)Q-2(Q+r)+k+j+w—l)
(v+v)Q-2(Q+r)+k+j+w-1

I l ( 2 ) ~ .
Q;jl_(Q+P k)+;) vQ-(Q+r-j)-1) ) dQ'(VQ-(Q+P-j)-1)
( 47y ) dl+d2-((V+;)Q—2(Q+r)+k+j+w—l)
(v4v)Q-2(Q+r)+k+j+w-1

(Eq. 5)

where v = (io/Q)-v. This result is based on the observation that each
sequence of total customer demands occurring at the bases--the super-
position of the two Poisson processes--is equally likely to occur given

a fixed number of arrivals at each base.

. ¥ T . ; .
Knowing P(Vl-lel—dl, D2—d2, Il-k, I2 13 Io—lo, Case B) 1is equivalent
to knowing Lhe probability distribution for the number of unsatistiod depot

orders placed by base 1 during (t-T-R,t-T].

Now
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P(U. = ujCase B; If z i)
r+Q r+Q i _tk-r-1+uQ ®
)} ) ) :
;j-q k=r+l j=r+l d =uQ-(Q+r-i) d?:io—[(dl~k+0+r)/Q]-0-(Q+r—i)+1
P(V [(d.-k+Q+r)/Ql-u|D.=d.; D_=d,; Il=k' ll=j' I =i % Case B)
1 s e R T A ey s s S it o TINE el
P(D.=d,; D, =d.; I =k; I =§; I =i_|cCase B; I2 = 1)y
g ik L e 2 I D G
where
1 X< . 2 -
zd =c =k s s = as . =
P(Dl—.L, DZ o5 I =k; 12 ;o IO i, Case B; Il i)
1 1 1 :
r a()R,dl) -a(AR,dv) . Ak i 5 ; when Case B holds and
A Q P(Case B; Il = i)
= ﬁ dl ‘ Nl when i > k and dl ¢ N2 when 1 < k

. 0; otherwise

(N and N2 have

1

where Eq. 5 is

Py, = [(dl-k+Q+r)/Q]—ulDl=dl; D

whenever d2 2 0

compute P(Ii 1
Following the

that

the same interpretation as given in Section II), and

used to evaluate

2

d We will show how to

2
Case B).

if < 0, this probability is 0.

same reasoning as used previously for Case A, we can show




i, r+Q

(12 =d3CaseB) =} ] ] I I 5.5 a2r,ned)
iocJ k=r+l neNl j=r+l deH Q
r+Q r+Q
1 1
¥ ¥ Z ) ) ) 1 —5--E--a(2AR,n+d),
i_eJ k=it+l neN j=r+l deH Q

0 2

where
H=1{d:d=0,1,..., [(n-k+Q+r)/Q]1:Q + Q(d-j+Q+r)/Ql-Q > io}-

Upon combining the above results we have shown how to determine

P(Bl(t) = b; Case B). As before, since the two cases form a partition,
P(Bl(t) = Db) = P(Bl(t) = b; Case A) + P(Bl(t) = b; Case B)
when b > 1 and

PAB.(t) =0) =1 - i P(B,(t) = b).
b>1
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IV. CONCLUDING COMMENTS

In this paper, we have examined a two-echelon inventory system in
which each location follows a continuous review (S,s) policy. The
objective of the paper was to show how to express the probability distri-
bution for the number of units backordered at any base at any arbitrary
point in time. Two cases were studied. In the first case, we assumed
there were a large number of identical bases and a depot in the system;
in the second case, the system consisted of a depot and two identical
bases. |

The results stated in Section III can be extended to the case
where there are any finite number of bases in the system. We studied the
case where there were two bases only for ease of exposition. There is no
theoretical difficulty hindering the development of the probability distri-
butions when the number of bases considered exceeds two. Furthermore, a
similar analysis can also be carried out for the situation in which the
Ai, Si’ and s differ between the two bases. To accomplish this,
we drop assumption 2 and employ the methods used in chapter 5 of reference 8
and the basic approach developed in Section III. The probability distri-
bution P(B(t) = b) is somewhat more tedious to calculate in the

general case; however, there are no theoretical problems that need to be

overcome .
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